Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 280, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676630

RESUMO

BACKGROUND: YrU1 is a nucleotide-binding site (NBS) and leucine-rich repeat (LRR) protein (NLR), with additional ankyrin-repeat and WRKY domains and confers effective resistance to stripe rust fungus Puccinia striiformis f. sp. Tritici (Pst). YrU1 was positionally cloned in the progenitor species of the A genome of bread wheat, Tricicum urartu, recently. However, the molecular mechanism and components involved in YrU1-mediated resistance are not clear. RESULTS: In this study, we found that the transcript level of TuRLK1, which encodes a novel leucine-rich repeat receptor-like kinase, was up-regulated after inoculation with Pst in the presence of YrU1, through RNA-seq analysis in T. urartu accession PI428309. TuRLK1 contained only a small number of LRR motifs, and was localized in the plasma-membrane. Transient expression of TuRLK1 induced hypersensitive cell death response in N. benthamiana leaves. Silencing of TuRLK1, using barley stripe mosaic virus (BSMV)-induced gene silencing (VIGS) system in PI428309 that contains YrU1, compromised the resistance against stripe rust caused by Pst CY33, indicating that TuRLK1 was required for YrU1-activated plant immunity. Furthermore, overexpression of TuRLK1 could enhance powdery mildew resistance in bread wheat and Arabidopsis thaliana after inoculating with the corresponding pathogens. CONCLUSIONS: Our study indicates that TuRLK1 is required for immune response mediated by the unique NLR protein YrU1, and likely plays an important role in disease resistance to other pathogens.


Assuntos
Arabidopsis , Basidiomycota , Basidiomycota/fisiologia , Resistência à Doença/genética , Leucina/metabolismo , Doenças das Plantas/microbiologia , Triticum/metabolismo
2.
Plant J ; 110(6): 1781-1790, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35411560

RESUMO

Cultivated wheat is continually exposed to various pathogens. Blumeria graminis f. sp. tritici (Bgt) causes powdery mildew disease and significant yield loss. Pm60 was cloned from Triticum urartu and confers race-specific powdery mildew resistance in wheat. Pm60a and Pm60b are allelic variants of Pm60 and have two leucine-rich repeat motifs deletions and insertions, respectively, which were detected in other T. urartu accessions. Through map-based cloning, virus-induced gene silencing, and stable transformation assays, we demonstrated that Pm60a and Pm60b conferred Bgt E09 resistance resembling that provided by Pm60. However, the homozygous Pm60a (but not Pm60 or Pm60b) transformants driven by the native promoters lacked race-specific resistance when they were inoculated with Bgt E18. As all three T. urartu accessions contained the three foregoing alleles, they had high resistance to Bgt E18. Pyramiding Pm60a with either of the allelic genes in F1 plants did not cause mutual allele suppression or interference with Bgt E18 resistance. Deletion (but not insertion) of the two leucine-rich repeat motifs in Pm60a substantially narrowed the resistance spectrum. In T. urartu accession PI428210, we identified another locus adjacent to Pm60a and resistant to Bgt E18. Characterization of the alleles at the Pm60 locus revealed their diversity and similarity and may facilitate wheat breeding for resistance to powdery mildew disease caused by B. graminis f. sp. tritici.


Assuntos
Resistência à Doença , Triticum , Alelos , Ascomicetos , Resistência à Doença/genética , Leucina , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...